Like us on Facebook: https://www.facebook.com/advexondocumentary

Watch the dark side of Quantum Physics — http://youtu.be/bPx_Vvjpw9Y

The World of Quantum – Full Documentary HD 2014

http://www.advexon.com For more Scientific DOCUMENTARIES.

Subscribe for more Videos…

Quantum mechanics (QM — also known as quantum physics, or quantum theory) is a branch of physics which deals with physical phenomena at nanoscopic scales where the action is on the order of the Planck constant. It departs from classical mechanics primarily at the quantum realm of atomic and subatomic length scales. Quantum mechanics provides a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. Quantum mechanics provides a substantially useful framework for many features of the modern periodic table of elements including the behavior of atoms during chemical bonding and has played a significant role in the development of many modern technologies.

In advanced topics of quantum mechanics, some of these behaviors are macroscopic (see macroscopic quantum phenomena) and emerge at only extreme (i.e., very low or very high) energies or temperatures (such as in the use of superconducting magnets). For example, the angular momentum of an electron bound to an atom or molecule is quantized. In contrast, the angular momentum of an unbound electron is not quantized. In the context of quantum mechanics, the wave–particle duality of energy and matter and the uncertainty principle provide a unified view of the behavior of photons, electrons, and other atomic-scale objects.

The mathematical formulations of quantum mechanics are abstract. A mathematical function, the wavefunction, provides information about the probability amplitude of position, momentum, and other physical properties of a particle. Mathematical manipulations of the wavefunction usually involve bra–ket notation which requires an understanding of complex numbers and linear functionals. The wavefunction formulation treats the particle as a quantum harmonic oscillator, and the mathematics is akin to that describing acoustic resonance. Many of the results of quantum mechanics are not easily visualized in terms of classical mechanics. For instance, in a quantum mechanical model the lowest energy state of a system, the ground state, is non-zero as opposed to a more “traditional” ground state with zero kinetic energy (all particles at rest). Instead of a traditional static, unchanging zero energy state, quantum mechanics allows for far more dynamic, chaotic possibilities, according to John Wheeler.

The earliest versions of quantum mechanics were formulated in the first decade of the 20th century. About this time, the atomic theory and the corpuscular theory of light (as updated by Einstein)[1] first came to be widely accepted as scientific fact; these latter theories can be viewed as quantum theories of matter and electromagnetic radiation, respectively. Early quantum theory was significantly reformulated in the mid-1920s by Werner Heisenberg, Max Born and Pascual Jordan, (matrix mechanics); Louis de Broglie and Erwin Schrödinger (wave mechanics); and Wolfgang Pauli and Satyendra Nath Bose (statistics of subatomic particles). Moreover, the Copenhagen interpretation of Niels Bohr became widely accepted. By 1930, quantum mechanics had been further unified and formalized by the work of David Hilbert, Paul Dirac and John von Neumann[2] with a greater emphasis placed on measurement in quantum mechanics, the statistical nature of our knowledge of reality, and philosophical speculation about the role of the observer. Quantum mechanics has since permeated throughout many aspects of 20th-century physics and other disciplines including quantum chemistry, quantum electronics, quantum optics, and quantum information science. Much 19th-century physics has been re-evaluated as the “classical limit” of quantum mechanics and its more advanced developments in terms of quantum field theory, string theory, and speculative quantum gravity theories. https://www.youtube.com/watch?v=ZsVGut7G-dU

1:30am on bank holiday Monday and yet I'm still here…..

Why do they have to make this documentary so over the top and dramatic. Is it not possible for people to watch an interesting science video without analogies and dramatic questions, or is it only possible for people to want to learn if it is commercialised into a capitalist freak show?

I am very curious if any of you have ever experimented with a hallucinogen. I know this may sound ridiculous but before I learned of quantum theory i tried acid and swear it showed me "reality". Peaks and valleys like the intersecting electron waves everywhere I focused.

pls upload this video in hindi language.

This is fascinating stuff !

Fuck David Koch.

Day 269: Still waiting for the funders to roll down.

The world is not real because measurements (words) are not real. They change. But I am not. It is strange that the hero identifies himself with the changing body and ideas.

Frequency waves and vibrations are the way to life.

really? an older doc you can watch for free withOUT commercials…and youre posting this and running a shit ton of ads?! no thanks

if humans are made of atoms. and if the quantum leap is true than why cant we teleport if "irritated"

`I ham am therefore I ham …until I oink