Colossal Black Holes – Astronomy Documentary on the Universe’s Gargantuan Black Holes HD

Share it with your friends Like

Thanks! Share it with your friends!

Close

A black hole is a mathematically defined region of spacetime exhibiting such a strong gravitational pull that no particle or electromagnetic radiation can escape from it. The theory of
general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole.[2][3] The boundary of the region from which no escape is possible is called the event
horizon. Although crossing the event horizon has enormous effect on the fate of the object crossing it, it appears to have no locally detectable features. In many ways a black hole acts like
an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black
body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace. The first modern solution of general
relativity that would characterize a black hole was found by Karl Schwarzschild in 1916, although its interpretation as a region of space from which nothing can escape was first published by
David Finkelstein in 1958. Long considered a mathematical curiosity, it was during the 1960s that theoretical work showed black holes were a generic prediction of general relativity. The discovery
of neutron stars sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality.

Black holes of stellar mass are expected to form when very massive stars collapse at the end of their life cycle. After a black hole has formed, it can continue to grow by absorbing mass from its
surroundings. By absorbing other stars and merging with other black holes, supermassive black holes of millions of solar masses (M☉) may form. There is general consensus that supermassive black
holes exist in the centers of most galaxies.

Despite its invisible interior, the presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Matter falling
onto a black hole can form an accretion disk heated by friction, forming some of the brightest objects in the universe. If there are other stars orbiting a black hole, their orbit can be used
to determine its mass and location. Such observations can be used to exclude possible alternatives (such as neutron stars). In this way, astronomers have identified numerous stellar black hole
candidates in binary systems, and established that the radio source known as Sgr A*, at the core of our own Milky Way galaxy, contains a supermassive black hole of about 4.3 million M☉.

Watch more: https://goo.gl/ZSizrM
*** *** *** *** *** ***
**************************************************

Thanks for Watching
Please Like and Subscribe to watch more videos

Comments

manifestgtr says:

I love how every one of these astronomy documentaries are different uploads of the same series from ten years ago

humphrey peek says:

they cant see the wood for the trees

humphrey peek says:

this a load of rubbish

Gerald Pauley says:

Time is relative. To us time is measured in years, months, days, hours, minutes, seconds. We based our ‘Time’ on the rotation of the earth around the sun. They say the Big Bang was instantaneous. That of course is according to our ‘Time’.

What if a black hole is creating another universe? In our Universe a black hole dissipates over billions of years. But, in another universe the ‘Time’, as we understand it, could be totally different and, in that universe, ‘Time’ could have a different scale where billions of years to us is instantaneous in that universe.
Anyway, have to go back to drinking beer before the Barman calls “TIME”!

RRH says:

if nothing existed, would there still be gravity/

Dvich says:

Does anyone know an HD link for this?

Evelyn Chisum says:

But what if the Big Bang was a white hole?

Ascension Community says:

HD WAS A LIE

VLS Productions says:

My left ear enjoyed the music

scumucs says:

parts of star wars score at 20:00 ?

TrialsofLust Mcleod says:

Ur soul will live

Experiment Master says:

"HD"

xaaa ruh says:

I DONT WANNA DIE CAN SOMETHING ESCAPE LIKE ROCKET SHIP????

Andrei. Lepadatu says:

I don't agree with the argument that "there is no matter in a black hole, and all mater that falls in just disappears" Not true!

johnny leaf says:

360p
p for Poop.

Write a comment